Reorganization Energy of AIH₃ Results and Discussion

A. OKNINSKI and S. PASYNKIEWICZ

Institute of Organic Chemistry and Technology, Technical University, (Politechnika), 00-662 Warszawa, Poland **Received February 25,1978**

The enthalpy of a dimer Al_2X_6 dissociation into planar monomers AIX_3 does not provide a good estimate of the strength of the AlXAl bridge bonds. It is assumed that the energy needed to separate Al_2X_6 into pyramidal monomers AIX_3 ^{*}

$$
\frac{x^{1}}{x^{2}}\left(\frac{x^{3}}{x^{4}}\right)\left(\frac{x^{5}}{x^{6}}\right)\left(\frac{x^{1}}{x^{2}}\right)\left(\frac{x^{2}}{x^{2}}\right)\left(\frac{x^{3}}{x^{6}}\right)\left(\frac{x^{5}}{x^{6}}\right)\left(1\right)
$$

would be a better approximation of the strength of the bridge [l] . The enthalpy of the reaction

$$
\sum_{x}^{x} A \bigg| \xrightarrow{x} A \longrightarrow \sum_{x}^{x} A \longrightarrow x \qquad (2)
$$

is called the reorganization energy (ΔE_r) . Given the enthalpy of dissociation and the reorganization energy, the bridge bond strength is approximated as their sum.

Some rather unexact estimates of the ΔE_r of process (2) were made [1]. A zero ΔE_r was expected for the AH_3 . It might be thus useful to get more accurate data for $AH₃$. Since the reorganization energies cannot be measured directly, the quantum mechanical calculations have been performed.

Computational Details

The existence of Al_2H_6 was observed by Breisacher and Siegel [2], but no structure investigations have been made. The geometry of $H¹H²$ Al fragment was taken from ab initio molecular orbital calculations for AlH₃(r(Al, H¹) = r(Al, H²) = 3 a.u., $\alpha(H^1 A)H^2$) = 120°) [3,4]. The geometry of AlH³ part was transferred from $Me₂ AlH₂ AlMe₂$ experimental bridge structure [5] $(r(A), H^3) = 3.16$ a.u., $\alpha(H^3 A) H^4 =$ 77.4°).

The computations were carried out with the program PGLYATOM [6] for a Gaussian-type basis. The basis used was a $(10, 6, 1/3, 1)$ set contracted to double ζ [7, 8]. The value 0.15 was used for the d-orbital exponent for Al [7].

TABLE I. Energy Calculations.

The results are collected in Table 1. The reorganization energy of AlH_3 , Eq. (2), equals E^{tot} $(A1H_3) - E^{tot}(A1H_3^*) = 0.156$ a.u. = 9.8 kcal/mol. It is perhaps interesting to note that this is approximately reproduced by the highest occupied MO energy change, which is 11 kcal/mol.

We are now in a position to estimate the strength of the Al-H bridge bond as the sum of the dissociation energy of $Al_2H_6(17.9 \text{ kcal/mol} [1])$ and the reorganization energy of $\text{AlH}_3(9.8 \text{ kcal/mol})$: 17.9 + $9.8 = 27.7$ kcal/mol. This should be compared with Al-X bridge bond strength estimates, $X = CI$, Br, I, Me, H, obtained accordingly [1].

The change of dipole moment in the process (2) reflects the change of electron distribution in the $AH₃$ unit.

Let us draw two excited monomer units, AH_3 ^{*}, in the dimer geometry with the dipole moment directions indicated (we use the convention $+q \rightarrow -q$ for the dipole moment direction):

$$
H = \left(\frac{1}{2}\right)^{n} \left(\frac{1}{2}\right)^{n}
$$

We realize that in the tetrahedral excited conformation of $\text{AlH}_3(\text{AlH}_3^*)$ the electron density shifts in the direction of the empty sp^3 hybrid. It should be noted that this is mainly due to the highest occupied MO electron density redistribution in process (2). This picture could suggest a covalent character of the bridge bonds in $Al₂H₆$.

Acknowledgements

The authors are grateful to Dr. Sadlej for making available the computer program used and to the Polish Academy of Sciences for financial support.

References

1 K. Wade, "Electron Deficient Compounds", Nelson, London (1971).

- 2 P. Breisacher and B. Siegel, J. *Am. Chem. Sot., 86, 5053* (1964) .
- 3 O. Gropen, R. Johansen, A. Haaland and O. Stokkeland, J. Organometal. Chem., 92, 147 (1975).
- 4 R. Ahlrichs, F. Keil, H. Lischka, W. Kutzelnigg, and V. Staemmler,J. Chem. *Phys., 63,455* (1975).
- 5 A. Almeningen, G. A. Anderson, F. R. Forgaard, and A. Haaland.Acra Chem. *&and..* 26.2315 (1972).
- D. B. Neumann, H. Basch, R. L. Kornagay, L. C. Snyder, . W. Moscowitz, C. Hornback, and S. P. Leibmann, Program 199, Quantum Chem. Program Exchange, Indiana University.
- 7 B. Roos and P. Siegbahn, *Theoret. Chim. Acra, 17,* 199, 209 (1970).
- *8* A. Veillard, *Theoret Chim. Acta, 12,405* (1968).