Reorganization Energy of AlH₃

A. OKNINSKI and S. PASYNKIEWICZ

Institute of Organic Chemistry and Technology, Technical University, (Politechnika), 00-662 Warszawa, Poland Received February 25, 1978

The enthalpy of a dimer $Al_2 X_6$ dissociation into planar monomers AlX_3 does not provide a good estimate of the strength of the AlXAl bridge bonds. It is assumed that the energy needed to separate $Al_2 X_6$ into pyramidal monomers AlX_3^*

$$\begin{array}{c} x^{1} \\ x^{2} \\ x^{2} \\ x^{4} \\ x^{4} \\ x^{4} \\ x^{6} \\ x^{6} \\ x^{6} \\ x^{6} \\ x^{2} \\ x^{2} \\ x^{2} \\ x^{4} \\ x^{3} \\ x^{3} \\ x^{3} \\ x^{4} \\ x^{4} \\ x^{5} \\ x^{6} \\ x^{6}$$

would be a better approximation of the strength of the bridge [1]. The enthalpy of the reaction

is called the reorganization energy (ΔE_r). Given the enthalpy of dissociation and the reorganization energy, the bridge bond strength is approximated as their sum.

Some rather unexact estimates of the ΔE_r of process (2) were made [1]. A zero ΔE_r was expected for the AlH₃. It might be thus useful to get more accurate data for AlH₃. Since the reorganization energies cannot be measured directly, the quantum mechanical calculations have been performed.

Computational Details

The existence of $Al_2 H_6$ was observed by Breisacher and Siegel [2], but no structure investigations have been made. The geometry of $H^1 H^2 Al$ fragment was taken from ab initio molecular orbital calculations for $AlH_3(r(Al, H^1) = r(Al, H^2) = 3 a.u., \alpha(H^1 AlH^2) =$ $120^\circ)$ [3,4]. The geometry of AlH^3 part was transferred from Me₂ AlH₂ AlMe₂ experimental bridge structure [5] (r(Al, H³) = 3.16 a.u., $\alpha(H^3 AlH^4) =$ $77.4^\circ)$.

The computations were carried out with the program POLYATOM [6] for a Gaussian-type basis. The basis used was a (10, 6, 1/3, 1) set contracted to double ξ [7, 8]. The value 0.15 was used for the d-orbital exponent for Al [7].

Results and Discussion

TABLE I. Energy Calculations.

The results are collected in Table 1. The reorganization energy of AlH_3 , Eq. (2), equals E^{tot} $(AlH_3) - E^{tot}(AlH_3^*) = 0.156$ a.u. = 9.8 kcal/mol. It is perhaps interesting to note that this is approximately reproduced by the highest occupied MO energy change, which is 11 kcal/mol.

MO Energies:	58.4984	58.5083
(negative in a.u.)	4.9072	4.9155
	3.2160	3.2242
	3.2143	3.2227
	3.2143	3.2224
	0.5740	0.5696
	0.4309	0.4299
	0.4309	0.4133
Total Energy: (negative in a.u.)	243.5726	243.5570
Dipole Moment (in debyes)	0	3

We are now in a position to estimate the strength of the Al-H bridge bond as the sum of the dissociation energy of Al₂H₆(17.9 kcal/mol [1]) and the reorganization energy of AlH₃(9.8 kcal/mol): 17.9 + 9.8 = 27.7 kcal/mol. This should be compared with Al-X bridge bond strength estimates, X = Cl, Br, I, Me, H, obtained accordingly [1].

The change of dipole moment in the process (2) reflects the change of electron distribution in the AlH₃ unit.

Let us draw two excited monomer units, AlH_3^* , in the dimer geometry with the dipole moment directions indicated (we use the convention $+q \rightarrow -q$ for the dipole moment direction):

We realize that in the tetrahedral excited conformation of $AlH_3(AlH_3^*)$ the electron density shifts in the direction of the empty sp³ hybrid. It should be noted that this is mainly due to the highest occupied MO electron density redistribution in process (2). This picture could suggest a covalent character of the bridge bonds in Al_2H_6 .

Acknowledgements

The authors are grateful to Dr. Sadlej for making available the computer program used and to the Polish Academy of Sciences for financial support.

References

1 K. Wade, "Electron Deficient Compounds", Nelson, London (1971).

- 2 P. Breisacher and B. Siegel, J. Am. Chem. Soc., 86, 5053 (1964).
- 3 O. Gropen, R. Johansen, A. Haaland and O. Stokkeland, J. Organometal. Chem., 92, 147 (1975).
- 4 R. Ahlrichs, F. Keil, H. Lischka, W. Kutzelnigg, and V. Staemmler, J. Chem. Phys., 63, 455 (1975).
- 5 A. Almeningen, G. A. Anderson, F. R. Forgaard, and A. Haaland, Acta Chem. Scand., 26, 2315 (1972).
- 6 D. B. Neumann, H. Basch, R. L. Kornagay, L. C. Snyder, J. W. Moscowitz, C. Hornback, and S. P. Leibmann, Program 199, Quantum Chem. Program Exchange, Indiana University.
- 7 B. Roos and P. Siegbahn, Theoret. Chim. Acta, 17, 199, 209 (1970).
- 8 A. Veillard, Theoret. Chim. Acta, 12, 405 (1968).